Positive semidefinite rank and nested spectrahedra

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Completely Positive Semidefinite Rank

An n×n matrix X is called completely positive semidefinite (cpsd) if there exist d×d Hermitian positive semidefinite matrices {Pi}i=1 (for some d ≥ 1) such that Xij = Tr(PiPj), for all i, j ∈ {1, . . . , n}. The cpsd-rank of a cpsd matrix is the smallest d ≥ 1 for which such a representation is possible. In this work we initiate the study of the cpsd-rank which we motivate twofold. First, the c...

متن کامل

Positive semidefinite rank

The positive semidefinite (psd) rank of a nonnegative real matrix M is the smallest integer k for which it is possible to find psd matrices Ai assigned to the rows of M and Bj assigned to the columns of M , of size k ˆ k, such that pi, jq-entry of M is the inner product of Ai and Bj . This is an example of a cone rank of a nonnegative matrix similar to nonnegative rank, and was introduced for s...

متن کامل

A Semidefinite Hierarchy for Containment of Spectrahedra

A spectrahedron is the positivity region of a linear matrix pencil and thus the feasible set of a semidefinite program. We propose and study a hierarchy of sufficient semidefinite conditions to certify the containment of a spectrahedron in another one. This approach comes from applying a moment relaxation to a suitable polynomial optimization formulation. The hierarchical criterion is stronger ...

متن کامل

Matrices with High Completely Positive Semidefinite Rank

A real symmetric matrix M is completely positive semidefinite if it admits a Gram representation by positive semidefinite matrices (of any size d). The smallest such d is called the completely positive semidefinite rank of M , and it is an open question whether there exists an upper bound on this number as a function of the matrix size. We show that if such an upper bound exists, it has to be a...

متن کامل

Polytopes of Minimum Positive Semidefinite Rank

The positive semidefinite (psd) rank of a polytope is the smallest k for which the cone of k × k real symmetric psd matrices admits an affine slice that projects onto the polytope. In this paper we show that the psd rank of a polytope is at least the dimension of the polytope plus one, and we characterize those polytopes whose psd rank equals this lower bound.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear and Multilinear Algebra

سال: 2017

ISSN: 0308-1087,1563-5139

DOI: 10.1080/03081087.2017.1381664